Today, we are sharing an Integration Formulas PDF Download . This is very useful for the upcoming competitive exams like SSC CGL, BANK, RAILWAYS, RRB NTPC, LIC AAO, and many other exams. Integration Formulas PDF Download  is very important for any competitive exam and this Integration Formulas PDF Download In Hindi is very useful for it. this FREE PDF will be very helpful for your examination.

MyNotesAdda.com is an online Educational Platform, where you can download free PDF for UPSC, SSC CGL, BANK, RAILWAYS, RRB NTPC, LIC AAO, and many other exams. Our Integration Formulas PDF Download is very Simple and Easy. We also Cover Basic Topics like Maths, Geography, H istory, Polity, etc and study materials including previous Year Question Papers, Current Affairs, Important Formulas, etc for upcoming Banking, UPSC, SSC CGL Exams. Our PDF will help you to upgrade your mark in any competitive exam.

Integration Formulas

1. Common Integrals
2. Integrals of Rational Functions
3. Integrals of Exponential Function
4. Integrals of Logarithmic Functions
5. Integrals of Trig. Functions

Common Integrals Formula PDF

1. Basic Integration Formulas
2. Integral of special functions
3. Integral by Partial Fractions
4. Integration by Parts
5. Other Special Integrals
6. Area as a sum
7. Properties of definite integration

Basic Formula

• ∫x n   = x n+1 /n+1  + C
• ∫cos x    = sin x  + C
• ∫sin x    = -cos x  + C
• ∫sec 2 x    = tan x  + C
• ∫cosec 2 x    = -cot x  + C
• ∫sec x tan x    = sec x  + C
• ∫cosec  x cot x    = -cosec x  + C
• ∫dx/√ 1- x 2  = sin -1  x  + C
• ∫dx/√ 1- x 2  = -cos -1  x  + C
• ∫dx/√ 1+ x 2  = tan -1  x  + C
• ∫dx/√ 1+ x 2  = -cot -1  x  + C
• ∫e x   = e x  + C
• ∫a x   = a x / log a + C
• ∫dx/x √ x 2   – 1= sec -1  x  + C
• ∫dx/x √ x 2   – 1= cosec -1  x  + C
• ∫1/x    = log |x| + c
• ∫tan x    = log |sec x| + c
• ∫cot x    = log |sin x| + c
• ∫sec x    = log |sec x + tan x| + c
• ∫cosec x    = log |cosec x – cot x| + c

Integrals of some special function s

•  ∫dx/(x 2   – a 2 ) = 1/2a  log⁡ |(x – a) / (x + a)| + c
•  ∫dx/(a 2   – x 2 ) = 1/2a  log⁡ |(a + x) / (a – x)| + c
• ∫dx / (x 2   + a 2 ) = 1/a  tan (-1) ⁡ x / a + c
• ∫dx / √(x 2   – a 2 ) = log |”x” + √(x 2 -a 2 )| + C
• 1.∫dx / √(a 2   – x 2 ) = sin-1 x / a + c
• ∫dx / √(x 2 + a 2 ) = log |”x” + √(x 2 + a 2 )| + C

Integration by parts

∫() ⁡()  = () ∫ () − ∫( ‘ () ∫() )

To decide first function. We use

I → Inverse (Example sin (-1)  ⁡x)

L → Log (Example log ⁡x)

A → Algebra (Example x 2 , x 3 )

T → Trigonometry (Example sin 2 x)

E → Exponential (Example e x )

E → Exponential (Example e x )

∫ex [f (x) + f ′(x)] dx = ∫ex f(x) dx + C

No. Of Pages:- 05

General Science Notes